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Abstract. We study in this paper the scaling and statistical properties of the alternating-current
conductivity of thin metal–dielectric composite films for different degrees of loss in metallic
components and particularly in the limit of vanishing losses. We model the system as a
two-dimensionalRLC network and calculate the effective conductivity by using a real-space
renormalization group method. It is found that the real conductivity fluctuates strongly for very
small losses. The correlation length diverges for vanishing losses leading to the failure of the
effective-medium theory to describe the dielectric properties of such systems in this limit. We
found also that the distribution of the real conductivity becomes log–normal below a certain critical
lossRc which is size dependent for finite systems. There is further discussion on the statistical
characterization of the optical modes.

1. Introduction

Dielectric properties of composite materials have constituted for a long time a subject of
intensive research [1] due to the wide variation of these properties achieved by changing their
composition. The effective-medium theory (EMT) provides the most useful way to describe
these properties [1]. In particular, the complex effective conductivity of thin metal–dielectric
composites was found from this theory to behave at the percolation threshold (i.e. for the
minimum concentration of the metal corresponding to the appearance of a continuous path; in
2D square lattices this metallic concentration is 50%) as [1,2]

σeff = √σmσd (1)

where the indicesm, d andeffstand respectively for the metal, dielectric and effective medium.
The conductivity of the dielectric component is generally assumed to be purely imaginary
(the absorption being neglected) while the real partR of the metallic resistivity corresponds
to the loss in the metal. Thus, in the limit of loss-free films (R = 0) corresponding to a
superconductor–dielectric film, the effective conductivity from equation (1) is purely real and
corresponds to an anomalous dissipation of the electric field. An anomalous absorption of
light has been observed experimentally [2] and was explained recently as a storage of the
electromagnetic energy in small regions of the film [3] or as a localization of the electric
field [4]. However, this experimental observation and theoretical interpretation does not mean
that the film becomes dissipative. Obviously, a film composed of non-dissipative components
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should not be dissipative. On the other hand, the real conductivity has been found (by two
different methods) to vanish for vanishing loss [4] which is opposite to the prediction of
equation (1). Therefore, it is interesting to check the validity of this equation in this limit
where its predictions remain ambiguously interpreted. Indeed, EMT is valid only if the length
scale is much larger than the correlation length [1, 2] and the result obtained recently [4] is
probably for sizes smaller than this length scale. The scaling behaviour of the conductivity
allows us then to investigate this quantity which is a characteristic length for such systems.
This correlation length is defined as the length scale over which the field fluctuations become
negligible. It can be measured by the scaling method used recently by Brouerset al [5] (at
this length, the conductivity saturates). We note here that the scaling study of the conductivity
by Brouerset al [5] has been restricted to just two values of the loss parameter:R = 0.1 and
R = 10−4, where they found that the real conductivity saturates at about one. However, the
above-mentioned discrepancy with the effective-medium theory (1) was observed for much
smaller losses [4] and should be enhanced for vanishing losses (R = 0). It is then necessary
to measure the correlation length (Lc) for vanishing losses in order to check the behaviour of
the effective conductivity which remains controversial in this limit.

In addition to the above-discussed discrepancy, a non-monotonic behaviour of the averaged
real conductivity was observed previously [4] forR � 10−5 indicating strong fluctuations of
this quantity, while for larger losses it seems to be well averaged. Therefore, a critical lossRc
should exist separating the two different statistical behaviours of the effective conductivity for
finite sizes (for sample sizes 512×512 this critical loss seems to be around 10−5). An extensive
study of this transition as well as the statistical properties of the effective conductivity is then
needed both to correctly average it (since, if its distribution is actually log–normal, its moments
can diverge) and also to characterize the phases on either side ofRc as for the electronic
systems. Indeed the electric field in the Helmholtz equation plays an identical role to the
electronic wavefunction in the Schrödinger equation [6] and a delocalization transition of the
optical modes was found at this critical loss for such systems [4]. An analogy is then possible
with the electronic systems where localized states (the insulating regime) are characterized
by log–normal conductance distributions while for extended or weakly localized states (the
metallic regime) these distributions are normal [7]. To the best of our knowledge, such an
investigation of the statistical properties of the effective conductivity in such composite films
has not been undertaken before.

The purpose of this paper is to examine in a first step the scaling properties of the real
effective conductivity in two-dimensional (2D) metal–dielectric composites for different losses
and to determine the correlation lengthLc in the region of vanishing losses (R → 0). We
investigate in a second step the statistical properties of this conductivity on either side of the
critical lossRc. In order to check the validity of (1) in the limit of vanishing losses, we restrict
ourselves in this work to the concentration of the metallic component corresponding to the
percolation thresholdpc (in this casepc = 0.5) where this equation is valid.

When the wavelength is sufficiently large compared to the grain size, we can neglect the
skin effect, and this composite system is modelled by a 2DRL–C square network where the
inductanceL stands for the metallic grains with a loss (resistance)R, while the dielectric
grains correspond to the capacitanceC which is assumed without dissipation. Indeed, the
conductivity of the metallic grains is well described by the Drude dielectric function and can
be seen as an inductance with a resistance in parallel with a capacitance [8]. In the limit of
small relaxation rate compared to the field frequency, itself being smaller than the plasmon
frequency, the metallic component can be approximated as anRL-bond. The electrostatic
potential in this random composite system satisfies

∇ · (ε∇8) = 0 (2)
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which can be evaluated numerically as a set of coupled difference equations for the lattice by
using a discrete approximation for the gradient operator. These resulting difference equations
are identical to Kirchhoff’s laws for a random impedance network. Such a random network
resembles then the composite that it is intended to model. Therefore, such a network is expected
to reproduce the effective conductivity, and its statistical properties, that we intend to study
in this work. We restrict ourselves overall to the characteristic frequencyωres where the ac
conductivity of the dielectric component has the same magnitude as the metallic one for small
losses. We can then use without loss of generality the framework whereL = C = ωres = 1
(this frequency can be easily determined from the real values of the dielectric constants of the
two components; in fact, for a gold–glass composite,ωres ' 0.8× 1016 Hz and corresponds
to the far-infrared region [9]). For frequencies different from the characteristic one we
normalize them withωres (ω/ωres). The metal and dielectric conductivities will then read
at the characteristic frequencyωres in this framework

σm = (i + R)−1 (3)

and

σd = −i. (4)

We use for the calculation of the effective conductivity the real-space renormalization group
method (RSRG) extensively studied during the two last decades [4, 5, 10, 11] which consists
in a representation of the network in Wheatstone bridges transformed into two equivalent
conductivities following the directionsx andy (see figure 1). This method has been shown
to be a good approximation for the calculation of the conductivity and the critical exponents
near the percolation threshold [5, 10, 11]. Metallic and dielectric components are generated
(with an equal concentration 0.5) from a uniform distribution. The effective conductivity is
averaged from 100 samples which leads to sufficient accuracy except in the case of very small
losses where the effective conductivity is not self-averaged and its moments diverge.

2. Scaling properties and characteristic lengths

In addition to the coherence length and the correlation length [5], the localization length (Lloc)
seems to be the third characteristic length for such systems. Indeed, electromagnetic modes
were found to be localized in 2D fractal films [12], rough surfaces [13], non-linear Raman
scattering [14] and also in the present metal–dielectric films [4] due to strong field fluctuations.
However, this length seems to be equivalent toLc, because the localization length for optical
waves is defined as the mean size of the sample above which the local field strength (the
equivalent to the wavefunction in the Helmholtz equation) decays by a factor e. This means
also that above this length the field fluctuations become small, which is the definition of the
correlation lengthLc. In the previous work [4], we found a delocalization of the eigenmodes
for vanishing losses (R → 0) indicating the divergence of the localization length. Therefore
the correlation length should also diverge in this limit.

Before examining the correlation length, let us first reconsider the scaling properties of the
real part of the effective conductivity, as was done by Brouerset al [5], but for a wider range
of losses extended to vanishing ones (R → 0). Obviously our results are identical to those
of Brouerset al for the values of the loss studied by them, i.e.R = 0.1 andR = 10−4. As
they found, the real conductivity increases and saturates at the correlation length (see figure 2).
Furthermore, for very small losses the effective conductivity is shown to fluctuate strongly as
opposed to the case for larger losses, where it seems to behave ‘well’ statistically. We note
also that, as expected, the saturation takes place at larger sizes when the loss is small, and
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Figure 1. The real-space renormalization group for a square network.
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becomes much greater than 1024 for lossesR < 10−6. Therefore, the strong fluctuations of
the effective conductivity appear when the size is smaller than the correlation lengthLc (or
equivalently, if the loss is smaller than the critical lossRc for a fixed system size). The critical
lossRc is then strongly related to the correlation lengthLc.

In figure 3 the correlation length is shown to increase rapidly when the loss decreases and
shows power-law divergence for vanishing losses (see the inset of figure 3) with the power-law
exponent 0.41 (close to the value 0.5 anticipated by Brouerset al [5]). This divergence is then
in agreement with the delocalization effect found previously for such systems [4] as discussed
above. Note that the divergence of the correlation length can also be predicted by EMT models
like Bruggeman and Ping Sheng models [15]. Therefore, for loss-free films the correlation
length is infinite and for any finite-size film equation (1) ceases to be valid. Indeed, our
numerical calculations indicate exactly zero real conductivity for any finite size while equation
(1) yields a real conductivity equal to one (from (2) and (3)). The anomalous absorption
observed experimentally [2] is then not due to the dissipation but originates from a localization
of the electromagnetic waves [4] or equivalently from the storage of the electromagnetic energy
in the film [3].
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Figure 3. The correlation length as a function of the lossR. The inset is a log–log plot of this
figure for the estimation of the power-law exponent.

3. Statistical behaviour of the conductivity

As shown in figure 2, when the loss is very small the effective conductivity (averaged over 100
samples) becomes strongly fluctuating. Therefore, as discussed in section 1, this conductivity
may not obey the central-limit theorem [16]. It is then important to study its statistics before
averaging it. This investigation can also be used to characterize the optical eigenmodes in such
systems by analogy with the quantum counterpart. The conductance fluctuations for classical
systems have been studied for a long time [17] but the electromagnetic eigenmodes have not
been characterized.
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In figures 4, we show the distribution of the conductivity for various losses. As shown
in these figures, in the region of large losses (R = 10−1 and 10−3) the distribution of the real
conductivity seems to be Gaussian and becomes narrower when the length scale increases,
confirming that in this region the real conductivity obeys the central-limit theorem [16]. When
the loss decreases these distributions become broadened, and consequently the conductivity
fluctuations increase (as clearly shown in figure 5). For much smaller losses (R = 10−6 and
10−9) the distribution becomes Poissonian and narrows for larger sample sizes forR = 10−6

(figure 4(c)) while it seems to be less affected by the size forR = 10−9 (figure 4(d)). We note
also from figure 4(c) and figure 4(d) that the distribution of the real conductivity narrows when
the loss decreases and tends to a delta peak at zero conductivity forR → 0, confirming our
previous discussion of the dissipation for vanishing losses. In fact these Poissonian distributions
of real conductivity forR = 10−6 and 10−9 correspond to a log–normal distribution (not shown
here to avoid a lengthy paper). Therefore for finite-size systems there is a phase transition at a
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Figure 4. The distribution of the real part of the effective conductivity for sample sizes 512× 512
(solid curve) and 1024× 1024 (dashed curve) and for four values of the loss: (a)R = 10−1,
(b)R = 10−3, (c)R = 10−6 and (d)R = 10−9.
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Figure 5. The variance of the real part of the effective conductivity (open circles) and the relative
variance (filled triangles).

critical lossRc from normal to log–normal distributions of real conductivity (Rc is estimated
at about 10−5 for the sizes 512× 512 and 1024× 1024 used here). The critical loss is then
size dependent as discussed above. ForR < Rc the averaged real conductivity should then be
estimated from its logarithm, i.e.

〈σ 〉 = exp(〈log(σ )〉) (5)

while for R > Rc, the conductivity is directly averaged. This method yields much smaller
real conductivities forR < Rc than the direct averaging and the decrease of the conductivity
observed previously for vanishing losses [4] is enhanced. In particular, atR = 10−9 the
averaged real conductivity becomes at least one magnitude smaller than the directly averaged
one. Therefore, the correlation length should increase more rapidly than in figure 3 for
vanishing losses.

This statistical behaviour of the real conductivity characterizes also the two phases
observed in reference [4] for a fixed sample size: localized modes forR > Rc and delocalized
modes forR < Rc. Therefore, from figures 4 the localized eigenmodes are characterized
by a normal distribution of the real conductivity while for extended modes this distribution
is log–normal. However, for the quantum counterpart the situation is reversed. In the
electronic systems, we study the distribution of conductance which is related to the transmission
coefficient [18]. The property analogous to the electronic conductance is then the optical
transmission coefficient which should show a similar statistical behaviour to the electronic
counterpart. Furthermore, a surprising analogy with the universal conductance fluctuations in
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the electronic systems [7] seems to be shown for the relative variance of the real ac conductivity,
which becomes independent of the loss forR 6 10−8 (see figure 5) and of the length scale
(see figure 4(d)).

4. Conclusions

We have studied in this paper the characteristic lengths and the statistical properties of the real
part of the effective conductivity in 2D metal–dielectric composites at the percolation threshold
and for a characteristic frequencyωres where the conductivities of the two components have the
same magnitude for a vanishing loss. We found that the correlation length (which is equivalent
to the localization length) diverges when the lossR vanishes. Therefore the effective-medium
theory represented by equation (1) ceases to be valid in this limit and the anomalous absorption
observed in this case is not due to any dissipative behaviour of these films but to an energy
storage of the electromagnetic waves in small regions of the sample.

We examined also the statistical properties of this effective conductivity and found two
different distributions of this quantity on either side of a critical lossRc. For lossesR > Rc the
distribution of conductivity is Gaussian while forR < Rc it becomes log–normal. Therefore
in the latter case, the effective conductivity ceases to be self-averaged because all its moments
diverge. The correct way to average this quantity (and avoid the non-monotonic behaviour of
the conductivity in figure 2) is then to average its logarithm (as in equation (4)). For a loss-free
system, the distribution becomes delta peaked at zero conductivity. The critical loss separating
these two phases is size dependent and is estimated atRc = 10−5 for sizes around 1024×1024
whileRc = 0 for infinite size.

These distributions seem to characterize the nature of the optical eigenmodes in such
films analogously with the distribution of conductance in the electronic systems. Indeed, it
has been found that the eigenmodes are localized forR > Rc while for R < Rc they are
delocalized [4]. However, these distributions seem to have long tails and the transition from
normal to log–normal distribution is not clearly observed. Therefore, this transition should
be investigated by using generalized distributions like Lévy distributions [19]. On the other
hand, although the optical properties of loss-free films seem to be explained, some real effects
like the local arrangement of the metallic components as well as the Flicker noise [15] are not
taken into account in the theoretical calculations. On the other hand, although neglected in the
modelling of such composites inRLC-networks, the skin effect can affect these distributions.
These questions should be considered further.
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[19] Shlesinger M F, Zaslavski G M and Frish U 1994Lévy Flights and Related Topics in Physics(Berlin: Springer)


